DE LA RECHERCHE À L'INDUSTRIE

ANALYSES PHYSICO-CHIMIQUES MESURE DU POUVOIR COMPLEXANT GLOBAL Quelles applications environnementales ?

| Alain DODI - Laboratoire d'Analyses Radiochimiques et Chimiques

JEUDI 19 JUIN 2014

www.cea.fr

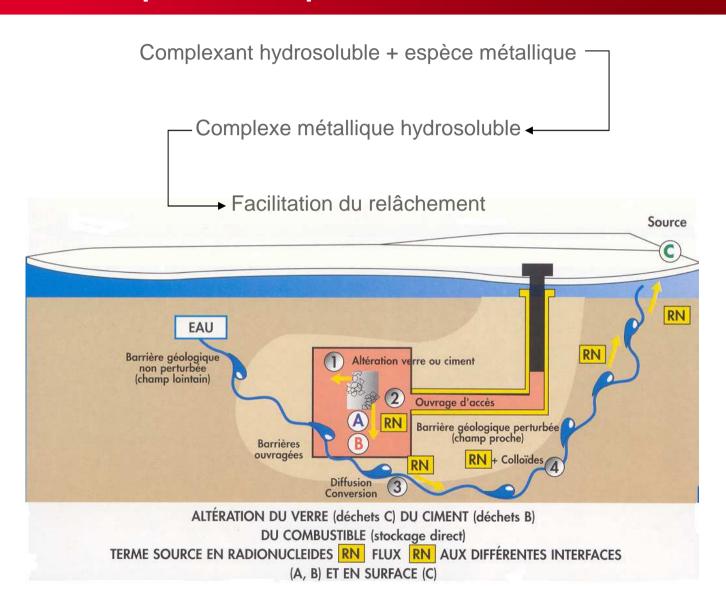
5èmes encontre CEA ⇔ Industrie, en région PACA, pour l'innovation et le transfert de technologie Risques industriels & Environnement / Prévention – Protection - Traitement De nouvelles technologies pour de nouveaux marchés

Ses domaines de compétence et d'expertise

- Analyse élémentaire et isotopique
 - ICP/AES
 - ICP/MS , ICP/MS-HR-MC
- Analyse sur solide
 - **F**X
 - _ IR
- Analyse anions, cations, complexants organiques
 - CI (conductimétrie, ampérométrie, UV/Vis), HPLC/MS
- Analyse radiométrique
 - \blacksquare Spectrométrie γ , Spectrométrie α , scintillation liquide

Le Pouvoir Complexant Global : définitions

☐ Complexant :


molécule (ou ion) capable de capter un cation (par exemple métallique).

□ PCG – Pouvoir Complexant Global :

aptitude d'une solution à capter (complexer) les espèces métalliques présentes dans l'eau, du fait de la présence de complexants.

Relâchement accru de métaux toxiques dans les sols, entraînés par les complexants

Les enjeux environnementaux du PCG Références bibliographiques

1/2

Influence des complexants organiques sur le relâchement des métaux.

- MEANS (1978): migration anormale du ⁶⁰Co au niveau de déchets stockés dans les fosses et tranchées du Oak Ridge National Laboratory.
 - EDTA (ou complexants congénères) : formation de complexes très forts avec les terres rares et les actinides
- ⇒ Accroissement de la mobilisation de ces radionucléides à partir des sites de stockage
 - J.L. Means, Science, <u>200</u>, 1477-1481, (1978).

Les enjeux environnementaux du PCG : Références bibliographiques

2/2

■ KERSTING et coll. : migration sur de très grandes distances du Pu (élément qui présente une très faible solubilité dans l'eau (10⁻¹⁷ M), solubilité qui dépend toutefois de son degré d'oxydation) à partir du « Nevada Test Site » où ont été réalisés des essais nucléaires.

Explication : présence de colloïdes entraîneurs

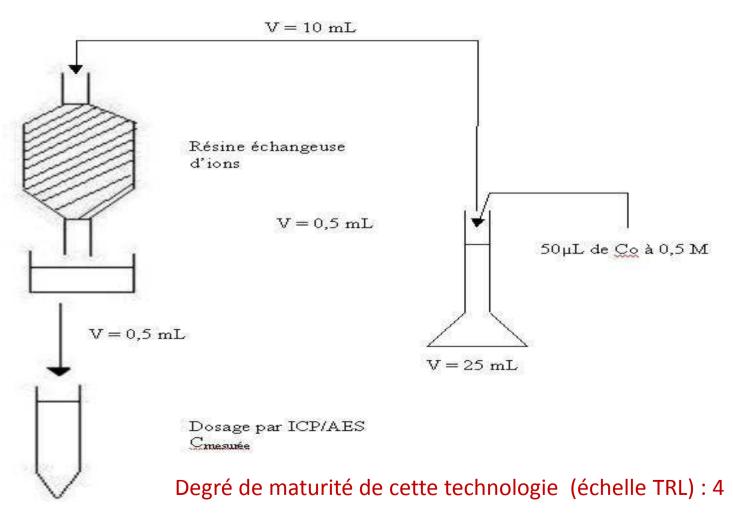
Nature, <u>397</u>, 56-59, (07/01/1999)

B. NOWACK remédiation des sols :

Traitement d'un sol pollué par des métaux, par de l'EDTA (qui solubilise d'autant mieux les métaux que le pH est compris entre 3 et 5.

Environmental Science and Technology, 36, 4009-4015, (2003)

Environmental Science and Technology, 38, 937-944, (2004)


La méthode de mesure du Pouvoir Complexant Global 1/5

- **Objectif**: proposer un test permettant d'estimer le pouvoir complexant d'une solution aqueuse. PCG exprimé par exemple en mg de Co complexé par litre d'effluent.
- Intérêt: éviter une mesure individuelle des complexants qui peut s'avérer non exhaustive.
- Principe:
 - Ajout d'un excès d'un cation métallique (Co2+) à l'échantillon, puis :
 - Rétention des complexes anioniques sur une résine échangeuse d'anions (résines « OnGuard A » (Dionex) retenant les complexes anioniques) avant dosage du métal élué non complexé.
- Mise au point d'un test permettant : la mesure du Pouvoir Complexant Global (PCG) d'une solution aqueuse.
 - Brevet 06/10418
 - Référence CEA: HD 801
 - A. Dodi

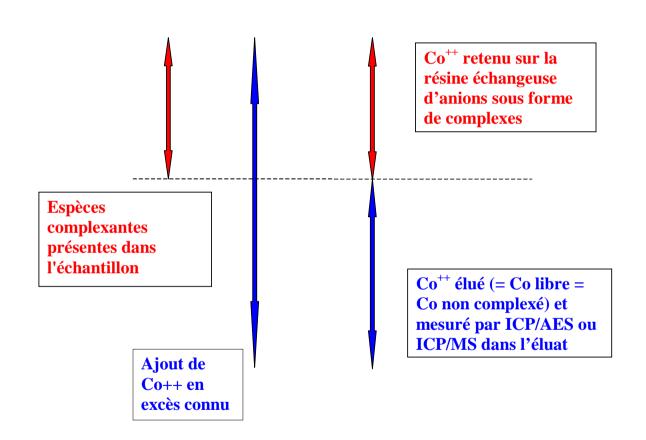

La méthode de mesure du Pouvoir Complexant Global 2/5

Schéma simplifié de la méthode de mesure du PCG

Principe de la mesure du Pouvoir Complexant Global

La méthode de mesure du Pouvoir Complexant Global 3/5

$$Taux \ de \ complexation = \frac{Co(II) \ effectivement \ complex\'e}{Co(II) complexable}$$

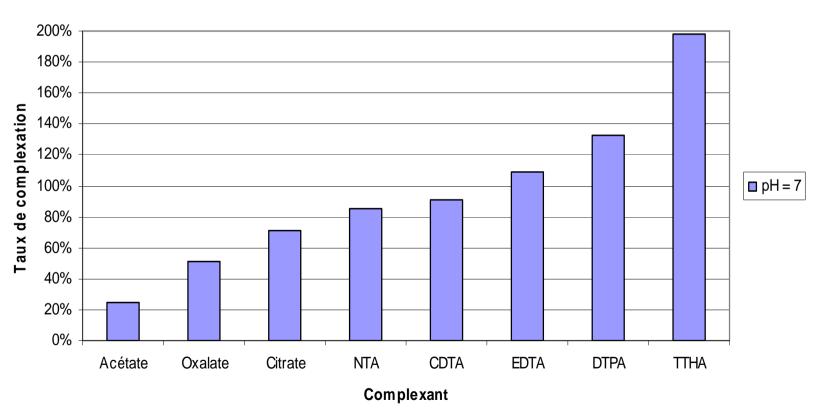
$$= \frac{Co(II) \ effectivement \ complex\acute{e}}{Ligand \ pr\acute{e}sent}$$

(Avec [Co(II)]/[L] = 5)

Ligands à faible Kc (formiate) ⇒ Taux < 1

Ligand à forte Kc (EDTA) \Rightarrow Taux \rightarrow 1

Ligand pouvant chélater 2 Co(II) (TTHA) \Rightarrow Taux \rightarrow 2


.

La méthode de mesure du Pouvoir Complexant Global 4/5

Qualification de la méthode par comparaison du taux de complexation observé par rapport au taux de complexation théorique

Comportements des différentes molécules vis à vis du cobalt

Applications industrielles de la méthode de mesure du Pouvoir Complexant Global

- La méthode et le brevet CEA intéressent deux grands domaines d'application :
 - Surveillance et analyse des eaux :
 - Cours d'eau
 - Réseaux de distribution,
 - Stations de traitement,
 - Bassins de rétention
 - ...
 - Surveillance et analyse des stockage et/ou enfouissements de déchets, notamment métalliques toxiques :
 - par lixiviation d'une masse connue de déchet et ensuite
 - > par mesure du PCG au niveau du lixiviat.

Contact:

alain.dodi@cea.fr

Commissariat à l'énergie atomique et aux énergies alternatives

Centre de Cadarache | 13108 Saint-Paul-Les-Durance cedex

T. +33 (0)4 42 25 40 9670 00 | SA3C

Etablissement public à caractère industriel et commercial | RCS Paris B 775

685 019